Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108275

RESUMEN

In vertebrates, two homologous heterotetrameric AP1 complexes regulate the intracellular protein sorting via vesicles. AP-1 complexes are ubiquitously expressed and are composed of four different subunits: γ, ß1, µ1 and σ1. Two different complexes are present in eukaryotic cells, AP1G1 (contains γ1 subunit) and AP1G2 (contains γ2 subunit); both are indispensable for development. One additional tissue-specific isoform exists for µ1A, the polarized epithelial cells specific to µ1B; two additional tissue-specific isoforms exist for σ1A: σ1B and σ1C. Both AP1 complexes fulfil specific functions at the trans-Golgi network and endosomes. The use of different animal models demonstrated their crucial role in the development of multicellular organisms and the specification of neuronal and epithelial cells. Ap1g1 (γ1) knockout mice cease development at the blastocyst stage, while Ap1m1 (µ1A) knockouts cease during mid-organogenesis. A growing number of human diseases have been associated with mutations in genes encoding for the subunits of adaptor protein complexes. Recently, a new class of neurocutaneous and neurometabolic disorders affecting intracellular vesicular traffic have been referred to as adaptinopathies. To better understand the functional role of AP1G1 in adaptinopathies, we generated a zebrafish ap1g1 knockout using CRISPR/Cas9 genome editing. Zebrafish ap1g1 knockout embryos cease their development at the blastula stage. Interestingly, heterozygous females and males have reduced fertility and showed morphological alterations in the brain, gonads and intestinal epithelium. An analysis of mRNA profiles of different marker proteins and altered tissue morphologies revealed dysregulated cadherin-mediated cell adhesion. These data demonstrate that the zebrafish model organism enables us to study the molecular details of adaptinopathies and thus also develop treatment strategies.


Asunto(s)
Trastornos del Neurodesarrollo , Factor de Transcripción AP-1 , Proteínas de Pez Cebra , Pez Cebra , Animales , Femenino , Humanos , Masculino , Ratones , Endosomas/metabolismo , Células Epiteliales/metabolismo , Isoformas de Proteínas/metabolismo , Red trans-Golgi/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Trastornos del Neurodesarrollo/genética , Factor de Transcripción AP-1/metabolismo , Proteínas de Pez Cebra/metabolismo
2.
Int J Mol Sci ; 22(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067854

RESUMEN

Numerous viruses hijack cellular protein trafficking pathways to mediate cell entry or to rearrange membrane structures thereby promoting viral replication and antagonizing the immune response. Adaptor protein complexes (AP), which mediate protein sorting in endocytic and secretory transport pathways, are one of the conserved viral targets with many viruses possessing AP-interacting motifs. We present here different mechanisms of viral interference with AP complexes and the functional consequences that allow for efficient viral propagation and evasion of host immune defense. The ubiquity of this phenomenon is evidenced by the fact that there are representatives for AP interference in all major viral families, covered in this review. The best described examples are interactions of human immunodeficiency virus and human herpesviruses with AP complexes. Several other viruses, like Ebola, Nipah, and SARS-CoV-2, are pointed out as high priority disease-causative agents supporting the need for deeper understanding of virus-AP interplay which can be exploited in the design of novel antiviral therapies.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , VIH-1/metabolismo , Herpesviridae/metabolismo , SARS-CoV-2/metabolismo , Ebolavirus/metabolismo , Endocitosis , Humanos , Virus Nipah/metabolismo , Transporte de Proteínas , Liberación del Virus , Replicación Viral
3.
Elife ; 92020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31928630

RESUMEN

Cytomegaloviruses (CMVs) are ubiquitous pathogens known to employ numerous immunoevasive strategies that significantly impair the ability of the immune system to eliminate the infected cells. Here, we report that the single mouse CMV (MCMV) protein, m154, downregulates multiple surface molecules involved in the activation and costimulation of the immune cells. We demonstrate that m154 uses its cytoplasmic tail motif, DD, to interfere with the adaptor protein-1 (AP-1) complex, implicated in intracellular protein sorting and packaging. As a consequence of the perturbed AP-1 sorting, m154 promotes lysosomal degradation of several proteins involved in T cell costimulation, thus impairing virus-specific CD8+ T cell response and virus control in vivo. Additionally, we show that HCMV infection similarly interferes with the AP-1 complex. Altogether, we identify the robust mechanism employed by single viral immunomodulatory protein targeting a broad spectrum of cell surface molecules involved in the antiviral immune response.


Asunto(s)
Complejo 1 de Proteína Adaptadora/inmunología , Evasión Inmune/inmunología , Proteínas de la Membrana/metabolismo , Muromegalovirus/fisiología , Proteínas Virales/metabolismo , Animales , Línea Celular , Regulación hacia Abajo , Humanos , Proteínas de la Membrana/genética , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Muromegalovirus/genética , Proteínas Virales/genética
4.
J Biol Chem ; 295(7): 2068-2083, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31915245

RESUMEN

Many secretory proteins are activated by cleavage at specific sites. The proprotein convertases (PCs) form a family of nine secretory subtilisin-like serine proteases, seven of which cleave at specific basic residues within the trans-Golgi network, granules, or at the cell surface/endosomes. The seventh member, PC7, is a type-I transmembrane (TM) protein with a 97-residue-long cytosolic tail (CT). PC7 sheds human transferrin receptor 1 (hTfR1) into soluble shTfR1 in endosomes. To better understand the physiological roles of PC7, here we focused on the relationship between the CT-regulated trafficking of PC7 and its ability to shed hTfR1. Deletion of the TMCT resulted in soluble PC7 and loss of its hTfR1 shedding activity. Extensive CT deletions and mutagenesis analyses helped us zoom in on three residues in the CT, namely Glu-719, Glu-721, and Leu-725, that are part of a novel motif, EXEXXXL725, critical for PC7 activity on hTfR1. NMR studies of two 14-mer peptides mimicking this region of the CT and its Ala variants revealed that the three exposed residues are on the same side of the molecule. This led to the identification of adaptor protein 2 (AP-2) as a protein that recognizes the EXEXXXL725 motif, thus representing a potentially new regulator of PC7 trafficking and cleavage activity. Immunocytochemistry of the subcellular localization of PC7 and its Ala variants of Leu-725 and Glu-719 and Glu-721 revealed that Leu-725 enhances PC7 localization to early endosomes and that, together with Glu-719 and Glu-721, it increases the endosomal activity of PC7 on hTfR1.


Asunto(s)
Antígenos CD/genética , Citosol/metabolismo , Transporte de Proteínas/genética , Receptores de Transferrina/genética , Subtilisinas/genética , Factor de Transcripción AP-2/genética , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos/genética , Antígenos CD/química , Membrana Celular/genética , Movimiento Celular/genética , Citosol/química , Endosomas/genética , Células HEK293 , Humanos , Receptores de Transferrina/química , Subtilisinas/química , Red trans-Golgi/genética
5.
BMC Infect Dis ; 18(1): 186, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29669531

RESUMEN

BACKGROUND: GSK has modified the licensed monovalent bulk manufacturing process for its split-virion inactivated quadrivalent influenza vaccine (IIV4) to harmonize the process among different strains, resulting in an increased number of finished vaccine doses, while compensating for the change from inactivated trivalent influenza vaccine (IIV3) to IIV4. To confirm the manufacturing changes do not alter the profile of the vaccine, a clinical trial was conducted to compare IIV4 made by the currently licensed process with a vaccine made by the new (investigational) process (IIV4-I). The main objectives were to compare the reactogenicity and safety of IIV4-I versus IIV4 in all age groups, and to demonstrate the non-inferiority of the hemagglutination-inhibition (HI) antibody responses based on the geometric mean titer ratio of IIV4-I versus IIV4 in children. METHODS: The Phase III, randomized, double-blind, multinational study included three cohorts: adults (18-49 years; N = 120), children (3-17 years; N = 821), and infants (6-35 months; N = 940). Eligible subjects in each cohort were randomized 1:1 to receive IIV4-I or IIV4. Both vaccines contained 15 µg of hemagglutinin antigen for each of the four seasonal virus strains. Adults and vaccine-primed children received one dose of vaccine, and vaccine-unprimed children received two doses of vaccine 28 days apart. All children aged ≥9 years were considered to be vaccine-primed and received one dose of vaccine. RESULTS: The primary immunogenicity objective of the study was met in demonstrating immunogenic non-inferiority of IIV4-I versus IIV4 in children. The IIV4-I was immunogenic against all four vaccine strains in each age cohort. The reactogenicity and safety profile of IIV4-I was similar to IIV4 in each age cohort, and there was no increase in the relative risk of fever (≥38 °C) with IIV4-I versus IIV4 within the 7-day post-vaccination period in infants (1.06; 95% Confidence Interval: 0.75, 1.50; p = 0.786). CONCLUSIONS: The study demonstrated that in adults, children, and infants, the IIV4-I made using an investigational manufacturing process was immunogenic with a reactogenicity and safety profile that was similar to licensed IIV4. These results support that the investigational process used to manufacture IIV4-I is suitable to replace the current licensed process. TRIAL REGISTRATION: ClinicalTrials.gov: NCT02207413 ; trial registration date: August 4, 2014.


Asunto(s)
Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/inmunología , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/inmunología , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Método Doble Ciego , Femenino , Fiebre/etiología , Pruebas de Inhibición de Hemaglutinación , Humanos , Lactante , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Masculino , Persona de Mediana Edad , Vacunas de Productos Inactivados/uso terapéutico
6.
Sci Rep ; 7(1): 15781, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29150658

RESUMEN

AP-1/σ1B-deficiency causes X-linked intellectual disability. AP-1/σ1B -/- mice have impaired synaptic vesicle recycling, fewer synaptic vesicles and enhanced endosome maturation mediated by AP-1/σ1A. Despite defects in synaptic vesicle recycling synapses contain two times more endocytic AP-2 clathrin-coated vesicles. We demonstrate increased formation of two classes of AP-2/clathrin coated vesicles. One which uncoats readily and a second with a stabilised clathrin coat. Coat stabilisation is mediated by three molecular mechanisms: reduced recruitment of Hsc70 and synaptojanin1 and enhanced µ2/AP-2 phosphorylation and activation. Stabilised AP-2 vesicles are enriched in the structural active zone proteins Git1 and stonin2 and synapses contain more Git1. Endocytosis of the synaptic vesicle exocytosis regulating Munc13 isoforms are differentially effected. Regulation of synaptic protein endocytosis by the differential stability of AP-2/clathrin coats is a novel molecular mechanism of synaptic plasticity.


Asunto(s)
Complejo 2 de Proteína Adaptadora/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Plasticidad Neuronal , Sinapsis/metabolismo , Animales , Membrana Celular/metabolismo , Endocitosis , Ratones , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Estabilidad Proteica
7.
Eur J Cell Biol ; 96(4): 356-368, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28372831

RESUMEN

γ2 adaptin is homologous to γ1, but is only expressed in vertebrates while γ1 is found in all eukaryotes. We know little about γ2 functions and their relation to γ1. γ1 is an adaptin of the heterotetrameric AP-1 complexes, which sort proteins in and do form clathrin-coated transport vesicles and they also regulate maturation of early endosomes. γ1 knockout mice develop only to blastocysts and thus γ2 does not compensate γ1-deficiency in development. γ2 has not been classified as a clathrin-coated vesicle adaptor protein in proteome analyses and functions for monomeric γ2 in endosomal protein sorting have been proposed, but adaptin interaction studies suggested formation of heterotetrameric AP-1/γ2 complexes. We detected γ2 at the trans-Golgi network, on peripheral vesicles and identified γ2 clathrin-coated vesicles in mice. Ubiquitous σ1A and tissue-specific σ1B adaptins bind γ2 and γ1. σ1B knockout in mice does not effect γ1/σ1A AP-1 levels, but γ2/σ1A AP-1 levels are increased in brain and adipocytes. Also γ2 is essential in development. In zebrafish AP-1/γ2 and AP-1/γ1 fulfill different, essential functions in brain and the vascular system.


Asunto(s)
Subunidades gamma de Complejo de Proteína Adaptadora/metabolismo , Subunidades sigma de Complejo de Proteína Adaptadora/metabolismo , Encéfalo/metabolismo , Clatrina/metabolismo , Vesículas Transportadoras/metabolismo , Red trans-Golgi/metabolismo , Subunidades gamma de Complejo de Proteína Adaptadora/química , Subunidades gamma de Complejo de Proteína Adaptadora/genética , Subunidades sigma de Complejo de Proteína Adaptadora/química , Subunidades sigma de Complejo de Proteína Adaptadora/genética , Adipocitos/citología , Adipocitos/metabolismo , Animales , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/metabolismo , Encéfalo/crecimiento & desarrollo , Línea Celular , Clatrina/genética , Embrión de Mamíferos , Embrión no Mamífero , Endosomas/metabolismo , Endosomas/ultraestructura , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Modelos Moleculares , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas/genética , Transducción de Señal , Vesículas Transportadoras/ultraestructura , Pez Cebra , Red trans-Golgi/ultraestructura
8.
J Biol Chem ; 292(16): 6703-6714, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28235798

RESUMEN

L-selectin regulates leukocyte adhesion and rolling along the endothelium. Proteins binding to the cytoplasmic tail of L-selectin regulate L-selectin functions. We used L-selectin cytoplasmic tail peptide pulldown assays combined with high sensitivity liquid chromatography/mass spectrometry to identify novel L-selectin tail-binding proteins. Incubation of the L-selectin tail with cell extracts from phorbol 12-myristate 13-acetate-stimulated Raw 264.7 macrophages resulted in the binding of µ1A of the clathrin-coated vesicle AP-1 complex. Furthermore, full-length GST-µ1A and the GST-µ1A C-terminal domain, but not the GST-µ1A N-terminal domain, bind to L-selectin tail peptide, and the intracellular pool of L-selectin colocalizes with AP-1 at the trans-Golgi network. We identified a novel basic protein motif consisting of a cluster of three dibasic residues (356RR357, 359KK360, and 362KK363) in the membrane-proximal domain of the L-selectin tail as well as a doublet of aspartic acid residues (369DD370) in the membrane-distal end of the L-selectin tail involved in µ1A binding. Stimulation of Raw 264.7 macrophages with PMA augmented the amount of µ1A associated with anti-L-selectin immunoprecipitates. However, full-length GST-µ1A did not bind to the phospho-L-selectin tail or phospho-mimetic S364D L-selectin tail. Accordingly, we propose that phosphorylation of µ1A is required for interaction with the L-selectin tail and that L-selectin tail phosphorylation may regulate this interaction in vivo Molecular docking of the L-selectin tail to µ1A was used to identify the µ1A surface domain binding the L-selectin tail and to explain how phosphorylation of the L-selectin tail abrogates µ1A interaction. Our findings indicate that L-selectin is transported constitutively by the AP-1 complex, leading to the formation of a trans-Golgi network reserve pool and that phosphorylation of the L-selectin tail blocks AP-1-dependent retrograde transport of L-selectin.


Asunto(s)
Complejo 1 de Proteína Adaptadora/química , Subunidades mu de Complejo de Proteína Adaptadora/química , Selectina L/química , Secuencias de Aminoácidos , Animales , Ácido Aspártico/química , Cristalografía por Rayos X , Citoplasma/metabolismo , Endotelio Vascular/metabolismo , Glutatión Transferasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Inmunoprecipitación , Macrófagos/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Monocitos/metabolismo , Fosforilación , Unión Proteica , Dominios Proteicos , Proteómica , Células RAW 264.7 , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Serina/química , Red trans-Golgi/metabolismo
9.
Hum Mol Genet ; 25(17): 3836-3848, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27466194

RESUMEN

Dominant or recessive mutations in the progressive ankylosis gene ANKH have been linked to familial chondrocalcinosis (CCAL2), craniometaphyseal dysplasia (CMD), mental retardation, deafness and ankylosis syndrome (MRDA). The function of the encoded membrane protein ANK in cellular compartments other than the plasma membrane is unknown. Here, we show that ANK localizes to the trans-Golgi network (TGN), clathrin-coated vesicles and the plasma membrane. ANK functionally interacts with clathrin and clathrin associated adaptor protein (AP) complexes as loss of either protein causes ANK dispersion from the TGN to cytoplasmic endosome-like puncta. Consistent with its subcellular localization, loss of ANK results in reduced formation of tubular membrane carriers from the TGN, perinuclear accumulation of early endosomes and impaired transferrin endocytosis. Our data indicate that clathrin/AP-mediated cycling of ANK between the TGN, endosomes, and the cell surface regulates membrane traffic at the TGN/endosomal interface. These findings suggest that dysfunction of Golgi-endosomal membrane traffic may contribute to ANKH-associated pathologies.


Asunto(s)
Membrana Celular/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Red trans-Golgi/metabolismo , Clatrina/metabolismo , Endocitosis , Fibroblastos/citología , Fibroblastos/metabolismo , Células HeLa , Humanos , Transferrina/metabolismo
10.
Sci Rep ; 6: 29950, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27411398

RESUMEN

The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein complex is expressed as three isoforms. Tissues express σ1A and one of the σ1B and σ1C isoforms. Brain is the tissue with the highest σ1A and σ1B expression. σ1B-deficiency leads to severe mental retardation, accumulation of early endosomes in synapses and fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and AP-1/σ1B regulate maturation of these early endosomes into multivesicular body late endosomes, thereby controlling synaptic vesicle protein transport into a degradative pathway. σ1A binds ArfGAP1, and with higher affinity brain-specific ArfGAP1, which bind Rabex-5. AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal Rabex-5 and enhanced, Rab5(GTP)-stimulated Vps34 PI3-kinase activity, which is essential for multivesicular body endosome formation. Formation of AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes differentially regulate endosome maturation and coordinate protein recycling and degradation, revealing a novel molecular mechanism by which they regulate protein transport besides their established function in clathrin-coated-vesicle formation.


Asunto(s)
Subunidades sigma de Complejo de Proteína Adaptadora/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Endosomas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neuronas/metabolismo , Transducción de Señal , Subunidades sigma de Complejo de Proteína Adaptadora/deficiencia , Animales , Encéfalo/metabolismo , Endosomas/ultraestructura , Proteínas Activadoras de GTPasa/metabolismo , Ratones Noqueados , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Sinaptosomas/metabolismo
11.
EMBO J ; 34(21): 2686-702, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26446278

RESUMEN

Active zones (AZs) of inner hair cells (IHCs) indefatigably release hundreds of vesicles per second, requiring each release site to reload vesicles at tens per second. Here, we report that the endocytic adaptor protein 2µ (AP-2µ) is required for release site replenishment and hearing. We show that hair cell-specific disruption of AP-2µ slows IHC exocytosis immediately after fusion of the readily releasable pool of vesicles, despite normal abundance of membrane-proximal vesicles and intact endocytic membrane retrieval. Sound-driven postsynaptic spiking was reduced in a use-dependent manner, and the altered interspike interval statistics suggested a slowed reloading of release sites. Sustained strong stimulation led to accumulation of endosome-like vacuoles, fewer clathrin-coated endocytic intermediates, and vesicle depletion of the membrane-distal synaptic ribbon in AP-2µ-deficient IHCs, indicating a further role of AP-2µ in clathrin-dependent vesicle reformation on a timescale of many seconds. Finally, we show that AP-2 sorts its IHC-cargo otoferlin. We propose that binding of AP-2 to otoferlin facilitates replenishment of release sites, for example, via speeding AZ clearance of exocytosed material, in addition to a role of AP-2 in synaptic vesicle reformation.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/fisiología , Células Ciliadas Auditivas/fisiología , Vesículas Sinápticas/metabolismo , Potenciales de Acción , Animales , Potenciales Evocados Auditivos del Tronco Encefálico , Audición , Ratones Endogámicos C57BL , Ratones Transgénicos , Sinapsis/fisiología , Transmisión Sináptica
12.
Mol Neurobiol ; 52(1): 142-61, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25128028

RESUMEN

Adaptor protein (AP)-1/σ1B(-/-) mice have reduced synaptic-vesicle (SV) recycling and increased endosomes. Mutant mice have impaired spatial memory, and σ1B-deficient humans have a severe mental retardation. In order to define these σ1B(-/-) 'bulk' endosomes and to determine their functions in SV recycling, we developed a protocol to separate them from the majority of the neuronal endosomes. The σ1B(-/-) 'bulk' endosomes proved to be classic early endosomes with an increase in the phospholipid phosphatidylinositol 3-phosphate (PI-3-P), which recruits proteins mediating protein sorting out of early endosomes into different routes. σ1B deficiency induced alterations in the endosomal proteome reveals two major functions: SV protein storage and sorting into endolysosomes. Alternative endosomal recycling pathways are not up-regulated, but certain SV proteins are misrouted. Tetraspanins are enriched in σ1B(-/-) synaptosomes, but not in their endosomes or in their clathrin-coated-vesicles (CCVs), indicating AP-1/σ1B-dependent sorting. Synapses contain also more AP-2 CCV, although it is expected that they contain less due to reduced SV recycling. Coat composition of these AP-2 CCVs is altered, and thus, they represent a subpopulation of AP-2 CCVs. Association of calmodulin-dependent protein kinase (CaMK)-IIα, -δ and casein kinase (CK)-IIα with the endosome/SV pool is altered, as well as 14-3-3η, indicating changes in specific signalling pathways regulating synaptic plasticity. The accumulation of early endosomes and endocytotic AP-2 CCV indicates the regulation of SV recycling via early endosomes by the interdependent regulation of AP-2-mediated endocytosis and AP-1/σ1B-mediated SV reformation.


Asunto(s)
Endocitosis , Endosomas/metabolismo , Vesículas Sinápticas/metabolismo , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción AP-2/metabolismo , Proteínas 14-3-3/metabolismo , Animales , Centrifugación , Vesículas Cubiertas por Clatrina/metabolismo , Marcaje Isotópico , Lisosomas/metabolismo , Ratones , Neuronas/metabolismo , Proteolisis , Sinaptosomas/metabolismo
13.
J Cell Sci ; 127(Pt 16): 3477-87, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24928897

RESUMEN

Here, we describe altered sorting of sortilin in adipocytes deficient for the σ1B-containing AP-1 complex, leading to the inhibition of adipogenesis. The AP-1 complex mediates protein sorting between the trans-Golgi network and endosomes. Vertebrates express three AP1 σ1 subunit isoforms - σ1A, σ1B and σ1C (also known as AP1S1, AP1S2 and AP1S3, respectively). σ1B-deficient mice display impaired recycling of synaptic vesicles and lipodystrophy. Here, we show that sortilin is overexpressed in adipose tissue from σ1B(-/-) mice, and that its overexpression in wild-type cells is sufficient to suppress adipogenesis. σ1B-specific binding of sortilin requires the sortilin DxxD-x12-DSxxxL motif. σ1B deficiency does not lead to a block of sortilin transport out of a specific organelle, but the fraction that reaches lysosomes is reduced. Sortilin binds to the receptor DLK1, an inhibitor of adipocyte differentiation, and the overexpression of sortilin prevents DLK1 downregulation, leading to enhanced inhibition of adipogenesis. DLK1 and sortilin expression are not increased in the brain tissue of σ1B(-/-) mice, although this is the tissue with the highest expression of σ1B and sortilin. Thus, adipose-tissue-specific and σ1B-dependent routes for the transport of sortilin exist and are involved in the regulation of adipogenesis and adipose-tissue mass.


Asunto(s)
Complejo 1 de Proteína Adaptadora/metabolismo , Subunidades sigma de Complejo de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Adipocitos/metabolismo , Adipogénesis , Tejido Adiposo/metabolismo , Complejo 1 de Proteína Adaptadora/genética , Subunidades sigma de Complejo de Proteína Adaptadora/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Adipocitos/citología , Tejido Adiposo/citología , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas
14.
Dev Dyn ; 243(2): 299-314, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24123392

RESUMEN

BACKGROUND: The family of AP-1 complexes mediates protein sorting in the late secretory pathway and it is essential for the development of mammals. The ubiquitously expressed AP-1A complex consists of four adaptins γ1, ß1, µ1A, and σ1A. AP-1A mediates protein transport between the trans-Golgi network and early endosomes. The polarized epithelia AP-1B complex contains the µ1B-adaptin. AP-1B mediates specific transport of proteins from basolateral recycling endosomes to the basolateral plasma membrane of polarized epithelial cells. RESULTS: Analysis of the zebrafish genome revealed the existence of three µ1-adaptin genes, encoding µ1A, µ1B, and the novel isoform µ1C, which is not found in mammals. µ1C shows 80% sequence identity with µ1A and µ1B. The µ1C expression pattern largely overlaps with that of µ1A, while µ1B is expressed in epithelial cells. By knocking-down the synthesis of µ1A, µ1B and µ1C with antisense morpholino techniques we demonstrate that each of these µ1 adaptins is essential for zebrafish development, with µ1A and µ1C being involved in central nervous system development and µ1B in kidney, gut and liver formation. CONCLUSIONS: Zebrafish is unique in expressing three AP-1 complexes: AP-1A, AP-1B, and AP-1C. Our results demonstrate that they are not redundant and that each of them has specific functions, which cannot be fulfilled by one of the other isoforms. Each of the µ1 adaptins appears to mediate specific molecular mechanisms essential for early developmental processes, which depends on specific intracellular vesicular protein sorting pathways.


Asunto(s)
Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Desarrollo Embrionario/genética , Pez Cebra/embriología , Red trans-Golgi/metabolismo , Naranja de Acridina , Complejo 1 de Proteína Adaptadora/genética , Complejo 1 de Proteína Adaptadora/metabolismo , Subunidades beta de Complejo de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Subunidades mu de Complejo de Proteína Adaptadora/genética , Animales , Secuencia de Bases , Cartilla de ADN/genética , Técnicas de Silenciamiento del Gen , Hibridación in Situ , Datos de Secuencia Molecular , Morfolinos/genética , Filogenia , Subunidades de Proteína/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia , Pez Cebra/metabolismo
15.
Curr Biol ; 23(21): 2185-90, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24206846

RESUMEN

Endosomal membrane traffic serves crucial roles in cell physiology, signaling, and development. Sorting between endosomes and the trans-Golgi network (TGN) is regulated among other factors by the adaptor AP-1, an essential component of multicellular organisms. Membrane recruitment of AP-1 requires phosphatidylinositol 4-phosphate [PI(4)P], though the precise mechanisms and PI4 kinase isozyme (or isozymes) involved in generation of this PI(4)P pool remain unclear. The Wnt pathway is a major developmental signaling cascade and depends on endosomal sorting in Wnt-sending cells. Whether TGN/endosomal sorting modulates signaling downstream of Frizzled (Fz) receptors in Wnt-receiving cells is unknown. Here, we identify PI4-kinase type 2ß (PI4K2ß) as a regulator of TGN/endosomal sorting and Wnt signaling. PI4K2ß and AP-1 interact directly and are required for efficient sorting between endosomes and the TGN. Zebrafish embryos depleted of PI4K2ß or AP-1 lack pectoral fins due to defective Wnt signaling. Rescue experiments demonstrate requirements for PI4K2ß-AP-1 complex formation and PI4K2ß-mediated PI(4)P synthesis. Furthermore, PI4K2ß binds to the Fz-associated component Dishevelled (Dvl) and regulates endosomal recycling of Fz receptors and Wnt target gene expression. These data reveal an evolutionarily conserved role for PI4K2ß and AP-1 in coupling phosphoinositide metabolism to AP-1-mediated sorting and Wnt signaling.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Factor de Transcripción AP-1/genética , Vía de Señalización Wnt , Proteínas de Pez Cebra/genética , Animales , Línea Celular , Endosomas/metabolismo , Receptores Frizzled/metabolismo , Humanos , Ratones , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transporte de Proteínas , Ratas , Factor de Transcripción AP-1/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo , Red trans-Golgi/metabolismo
16.
Sci Rep ; 3: 1813, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23657274

RESUMEN

Intracellular protein trafficking pathways are hijacked by viruses at various stages of viral life-cycle. Heterotetrameric adaptor protein complexes (APs) mediate vesicular trafficking at distinct intracellular sites and are essential for maintaining the organellar homeostasis. In the present study, we studied the effect of AP-1 and AP-3 deficiency on flavivirus infection in cells functionally lacking these proteins. We show that AP-1 and AP-3 participate in flavivirus life-cycle at distinct stages. AP-3-deficient cells showed delay in initiation of Japanese encephalitis virus and dengue virus RNA replication, which resulted in reduction of infectious virus production. AP-3 was found to colocalize with RNA replication compartments in infected wild-type cells. AP-1 deficiency affected later stages of dengue virus infection where increased intracellular accumulation of infectious virus was observed. Therefore, our results propose a novel role for AP-1 and AP-3 at distinct stages of infection of some of the RNA viruses.


Asunto(s)
Complejo 1 de Proteína Adaptadora/fisiología , Complejo 3 de Proteína Adaptadora/fisiología , Infecciones por Flavivirus/metabolismo , Flavivirus/fisiología , Replicación Viral , Animales , Western Blotting , Proliferación Celular , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Dengue/metabolismo , Dengue/patología , Dengue/virología , Virus del Dengue/fisiología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/virología , Virus de la Encefalitis Japonesa (Especie)/fisiología , Encefalitis Japonesa/metabolismo , Encefalitis Japonesa/patología , Encefalitis Japonesa/virología , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/virología , Infecciones por Flavivirus/patología , Infecciones por Flavivirus/virología , Técnica del Anticuerpo Fluorescente , Riñón/citología , Riñón/metabolismo , Riñón/virología , Ratones , Ratones Noqueados , ARN Mensajero/genética , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Vero
17.
J Cell Sci ; 126(Pt 5): 1155-63, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23321636

RESUMEN

The AP-1 complex recycles between membranes and the cytoplasm and dissociates from membranes during clathrin-coated-vesicle uncoating, but also independently of vesicular transport. The µ1A N-terminal 70 amino acids are involved in regulating AP-1 recycling. In a yeast two-hybrid library screen we identified the cytoplasmic prolyl-oligopeptidase-like protein PREPL as an interaction partner of this domain. PREPL overexpression leads to reduced AP-1 membrane binding, whereas reduced PREPL expression increases membrane binding and impairs AP-1 recycling. Altered AP-1 membrane binding in PREPL-deficient cells mirrors the membrane binding of the mutant AP-1* complex, which is not able to bind PREPL. Colocalisation of PREPL with residual membrane-bound AP-1 can be demonstrated. Patient cell lines deficient in PREPL have an expanded trans-Golgi network, which could be rescued by PREPL expression. These data demonstrate PREPL as an AP-1 effector that takes part in the regulation of AP-1 membrane binding. PREPL is highly expressed in brain and at lower levels in muscle and kidney. Its deficiency causes hypotonia and growth hormone hyposecretion, supporting essential PREPL functions in AP-1-dependent secretory pathways.


Asunto(s)
Serina Endopeptidasas/metabolismo , Factor de Transcripción AP-1/metabolismo , Red trans-Golgi/metabolismo , Subunidades del Complejo de Proteínas Adaptadoras/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Clatrina/metabolismo , Humanos , Inmunoprecipitación , Riñón/metabolismo , Ratones , Músculos/metabolismo , Prolil Oligopeptidasas , Unión Proteica
18.
Traffic ; 14(4): 458-69, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23350547

RESUMEN

Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by over-accumulation of low-density lipoprotein-derived cholesterol and glycosphingolipids in late endosomes/lysosomes (LE/L) throughout the body. Human mutations in either NPC1 or NPC2 genes have been directly associated with impaired cholesterol efflux from LE/L. Independent from its role in cholesterol homeostasis and its NPC2 partner, NPC1 was unexpectedly identified as a critical player controlling intracellular entry of filoviruses such as Ebola. In this study, a yeast three-hybrid system revealed that the NPC1 cytoplasmic tail directly interacts with the clathrin adaptor protein AP-1 via its acidic/di-leucine motif. Consequently, a nonfunctional AP-1A cytosolic complex resulted in a typical NPC-like phenotype mainly due to a direct impairment of NPC1 trafficking to LE/L and a partial secretion of NPC2. Furthermore, the mislocalization of NPC1 was not due to cholesterol accumulation in LE/L, as it was not rescued upon treatment with Mß-cyclodextrin, which almost completely eliminated intracellular free cholesterol. Our cumulative data demonstrate that the cytosolic clathrin adaptor AP-1A is essential for the lysosomal targeting and function of NPC1 and NPC2.


Asunto(s)
Complejo 1 de Proteína Adaptadora/metabolismo , Proteínas Portadoras/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular , Colesterol/metabolismo , Exocitosis , Péptidos y Proteínas de Señalización Intracelular , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Proteína Niemann-Pick C1 , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Técnicas del Sistema de Dos Híbridos , beta-Ciclodextrinas/farmacología
19.
Dev Dyn ; 239(9): 2404-12, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20652956

RESUMEN

Protein transport between the trans-Golgi network and endosomes is mediated by transport vesicles formed by the adaptor-protein complex AP-1, consisting of the adaptins γ1, ß1, µ1, σ1. Mammalia express µ1A ubiquitously and isoform µ1B in polarized epithelia. Mouse γ1 or µ1A 'knock out's revealed that AP-1 is indispensable for embryonic development. We isolated µ1A and µ1B from Danio rerio. Analysis of µ1A and µ1B expression revealed tissue-specific expression for either one during embryogenesis and in adult tissues in contrast to their expression in mammalia. µ1B transcript was detected in organs of endodermal derivation and "knock-down" experiments gave rise to embryos defective in formation of intestine, liver, and pronephric ducts. Development ceased at 7-8 dpf. µ1B is not expressed in murine liver, indicating loss of µ1B expression and establishment of alternative sorting mechanisms during mammalian development.


Asunto(s)
Complejo 1 de Proteína Adaptadora/metabolismo , Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Morfogénesis/fisiología , Isoformas de Proteínas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Complejo 1 de Proteína Adaptadora/genética , Subunidades mu de Complejo de Proteína Adaptadora/clasificación , Subunidades mu de Complejo de Proteína Adaptadora/genética , Secuencia de Aminoácidos , Animales , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genoma , Humanos , Ratones , Datos de Secuencia Molecular , Fenotipo , Filogenia , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Alineación de Secuencia , Distribución Tisular , Pez Cebra/anatomía & histología , Pez Cebra/genética , Proteínas de Pez Cebra/clasificación , Proteínas de Pez Cebra/genética
20.
EMBO J ; 29(8): 1318-30, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20203623

RESUMEN

Synaptic vesicle recycling involves AP-2/clathrin-mediated endocytosis, but it is not known whether the endosomal pathway is also required. Mice deficient in the tissue-specific AP-1-sigma1B complex have impaired synaptic vesicle recycling in hippocampal synapses. The ubiquitously expressed AP-1-sigma1A complex mediates protein sorting between the trans-Golgi network and early endosomes. Vertebrates express three sigma1 subunit isoforms: A, B and C. The expressions of sigma1A and sigma1B are highest in the brain. Synaptic vesicle reformation in cultured neurons from sigma1B-deficient mice is reduced upon stimulation, and large endosomal intermediates accumulate. The sigma1B-deficient mice have reduced motor coordination and severely impaired long-term spatial memory. These data reveal a molecular mechanism for a severe human X-chromosome-linked mental retardation.


Asunto(s)
Complejo 1 de Proteína Adaptadora/metabolismo , Endosomas/metabolismo , Aprendizaje , Memoria , Vesículas Sinápticas/metabolismo , Complejo 1 de Proteína Adaptadora/análisis , Complejo 1 de Proteína Adaptadora/genética , Animales , Conducta Animal , Células Cultivadas , Clatrina/metabolismo , Femenino , Expresión Génica , Hipocampo/citología , Humanos , Ratones , Ratones Noqueados , Actividad Motora , Neuronas/metabolismo , Isoformas de Proteínas/análisis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...